Farming fish that are resistant to disease will require fewer resources and produce less waste overall, he says. Though Lutz is positive about the research, he isn’t convinced that the CRISPR catfish represent the future of aquaculture. The gene-editing procedure used by the team is fiddly, and it would probably need to be done for each round of fish spawning for the hybrid catfish commonly used in fish farming. “It’s just too difficult to produce enough of these fish to get a viable, genetically healthy line going,” he says.
Ready to eat?
The Auburn scientists hope to eventually get their transgenic catfish approved so that it can be sold and eaten. But that could be a long process.
Only one other type of genetically engineered fish has received approval in the US. In 2021, AquAdvantage salmon finally entered the US market—26 years after the company behind the fish, AquaBounty, first applied for approval from the Food and Drug Administration. The salmon have an extra gene—taken from the genome of another type of salmon—that makes them grow much bigger than they otherwise would.
Suppose the catfish are eventually approved for sale. Would anyone eat them? Su and Dunham think so. Once the fish are cooked, the protein made by the alligator gene will lose its biological activity, so it is unlikely to have any consequences for the person eating the fish, says Su. At any rate, plenty of people already eat alligator meat, he adds. “I would eat it in a heartbeat,” says Dunham.
But Lutz points out that others might not be comfortable with the idea of eating a catfish with an alligator gene. “I’m sure you’ll have people that fully expect that catfish to have a big, long mouth with pointy teeth to bite them,” he says.
Correction: This article has been updated to correct the description of the approval of AquAdvantage salmon.